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I. INTRODUCTION

A transducer which feeds analog information to a digital data processor

requires an emalog-to-di'gitai converter. The possibility of eliminating the

converter by utilizing a digital transducer is an attractive one. This pro-

Ject originated from a conviction that such a concept is sound _n a limited

but useful way. This report describes theories and measurements which form

the basfs of a family of digital transducer principles.

A digital transducer is a device which initiates a discontinuous signal

when the quantity sensed passes through a threshold value. Many discontin-

uous phenomena exist in nature which reflect a change-of-state at some thres-

hold condition. The change in dielectric constant of BaTi0 2 with temperature

is an example. Its performance would be limited by the hysteretic nature of
7

the domain-flipping mechanism, however. More suitable mechanisms exist which

are essentially reversible and can be exploited. From this point one asserts

a digital transducer can be conceived which initiates a set of digital or

stairstep responses to suitably spaced thresholds within therange of the

quantity sensed.

Devices which meet the definition of an ordinary transducer may either

generate a suitable signal or modulate a signal being generated elsewhere.

Examples of these are the thermocouple and resistance wire thermometer res-

pectively. A digital transducer can also be placed in either of these cate-

gories. A transducer would also qualify as being digital if it initiates a

positive pulse each time the input rises through the next higher threshold,

and initiates a negative pulse at each threshold on the way down. Fig. 1

illustrates typical input-output characteristics to be sought. The primary

test for. a true digital transducer, then, is its freedom from a separate ana-

log-to-digital converter.
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II. PHYSICAL PHENOMENA OF POTENTIAL VALUE

A. A CATALOG OF PHYSICAL PHENOMENA

At this early stage in the program only an incomplete list

of phenomena can be presented. It is not clear how completely

this can ever be done since ingenuity and unexpected discovery

will continue to be unbounded variables. An organized and docu-

mented body of knowledge, compartmented into recognizable segments

for classification must be set up. Terms must be defined which

facilitate discussion and analysis. This section is offered with

the realization that the subject will eventually mature and a

start has been made.

i. Cooperative Phenomena--This class ihcludes those threshold

phenomena which have a quality of coherence. A Q-switched laser

is one example in which the transducer output is a light pulse

when a reflecting mirror or prism has reached a chosen position.

The similar statement can be made about the less sophisticated

toy cap pistol. In both these examples the "transducer" needs

to be "loaded" after each digital pulse response.

The condensation of normal electrons into superconducting

pairs with opposite spins is a true digital behavior which can

lead to cryogenic digital transducers for measuring temperature

or magnetic field. Because it is a nearly ideal physical pheno-

menon, section II B describes workable devices in some detail.

l
!
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Its applicability would be limited to temperatures less than 20°K

since all known superconducting materials have critical tempeEa-

tures below this value.

Another aspect of superconductivity ideally suited to digital

transducer action is Josephsen tunneling. The effect is a zero

voltage transport of charge across a very thin insulating film

between two superconducting films. This component of current flows

in addition to the familiar tunneling current consisting of single

electrons. This effect is the basis of a new class of cryotrons,

as recently shown by Matisoo ( 1 ). The Josephsen tunneling cur-

rent is exceedingly rapid, with switching times well below a nan-

osecond. The transition is the removal of the Josephsen compo-

nent with a magnetic field generated by a control current in an

adjacent superconductor. There is no transition from the super-

conducting to normal states in this mechanism. In a digital trans-

ducer the device would consist of several junctions in series or

parallel, with each one switched at a preset value of an external

magnetic field. The transitions are sharp and reproducible but

the entire concept is limited by the low temperature requirement.

2. Exhaustion Phenomena--This class includes those phenomena which

cause a discontinuity due to exhaustion of stored charge. The

exhaustion of space charge in thermionic diodes is a familiar

example. As plate voltage is raised the plate current tends to

saturate at a value set by the cathode temperature.

A less familiar example is the exhaustion of surface charge
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states in semiconductors. This effect has been studied in thin-

film tunneling configurations and is sufficiently promising to

merit closer investigation. The theory of digital transducers

using this phenomenon is described in the next chapters.

3. Unstable Phenomena--This class includes avalanche effects which

have a threshold. Zener breakdown in P-N junctions is an example.

Multiple discontinuities in the voltage-current characteristics

have been observed and may become a digital transducer mechanism

if the external influence is sufficiently developed.

h. Geometry-Limited Phenomena--There are numerous examples of

discontinuous behavior determined by a moving boundary reaching

a discontinuity in a device. An example would be a depletion zone

in a semiconductor crystal widening until it encountered a sur-

face with higher or lower conductivity. This effect may prove

to be a means of building a multiple-step transducer in which the

first step would terminate by a depletion zone reaching its limit

and other steps continuing until they are successively terminated.

This concept is a possible means of commutation of several

transducers in addition to being the basis for digital response.

This is being considered in conjunction with the surface state

exhaustion studies.

5. Ordering and Phase Transformations in Metals--This is a broad

and complex class of phenomena in solids which may include some

of the others in this list. We refer here to a restricted group
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of behaviors in metals which are reflected in their specific heat,

magnetic and resistive behavior with temperature and pressure.

The subject is covered by Seitz (2) and many more recent texts.

It is a class of behavior which is hysteretic and slow in going

to completion. The figures on the next page are taken from Seitz's

examples. In general a rearrangement of atom positions, such

as the a - y phase transition in iron, or the change from disorder

to order in the arrangement of atoms of CuPd or Fe3AI, is not a

phenomenon which would give reversible characteristics. While

the discontinuities are evident, they are well known and do not

seem particularily attractive for digital transducers.

The antiferromagnetic and ferrimagnetic effects are different

from ferromagnetism in the alignment of electron spins. Anti-

ferromagnetism is displayed in crystals of compounds like MnO

in which the Mn ions are arranged with antiparallel spins. At

some sufficiently high temperature, called the Ne'elTemperature,

the paired spin configuration breaks down completely. Above this

temperature they behave as normal paramagnetic materials.

Ferrites are a special group, being ionic crystals of metal

atoms plus Fe and 0; MeFe204. The unit cell has 24 Fe atoms,

16 trivalent and 8 divalent. The 8 divalent atoms have aligned

moments which gives the crystal a net moment and an incomplete anti-

ferromagnetic spin arrangement.

While these materials are extremely interesting, no obvious

application to a novel digital transducer is seen at this time.
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Figure 2. Examples of 0rder-Disorder and Phase Transformations

in Metals (See Seitz, Reference 2., )
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6. Resonance and Relaxation Phenomena--There is a variety of

natural resonance and relaxation phenomena which would have true

digital response of a pulse type. Magnetic resonance is an ex-

ample of numerous frequency dependent magnetic effects in solids.

These include paramagnetic relaxation effects and nuclear reson-

ance which reflect a complex susceptibility. In a high frequency

magnetic field Gorter ( 3 ) observed the build-up of magnetization

could be represented by the equation

dMldt = (Me - M)I 

where M e is the equilibrium value and T is an equivalent relaxa-

tion time. This phenomenon has an analog in dielectrics which

leads to a complex permittivity. In each behavior the relaxation

time is best represented by a distribution of relaxation times.

The paramagnetic phenomena are best understood by consider-

ing a material which contains a randomly oriented group of free

magnetic dipoles. If a uniform external magnetic field is applied

the dipoles will precess about the H vector but not orient them-

selves. The only way in which they will add to the magnetization

is by exchanging energy with their surroundings. The relaxation

occurs as a spin-lattice or spin-spin mechanism. The essential

difference between them is seen by comparing the size of the

applied field, Ha, and the local field set up by neighboring

dipoles, H i . For H a << Hi precession about the Hi vector is shif-

ted to a slightly different direction. There is an energy ex-

change between each dipole and the field but not with the lattice.
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Spin-lattice relaxation occurs when Ha >> H i and the field direc-

tion is determined by Ha . If the value of H a is changed the num-

ber of dipoles in parallel and antiparallel orientations is shif-

ted toward a new equilibrium value by exchange of energy with the

lattice.

Since atomic nuclei have a magnetic moment associated with

their angular momentum, there is a nuclear analog to the para-

magnetic relaxation. Nuclear Magnetic Resonance is well known

and is the basis for numerous measuring instruments. The sharp

response as frequency and magnetic field are tuned to their pro-

per values for the material in the measurement suggests this as

an attractive digital transducer phenomenon.

7. Dipole 0rientation--Dielectric materials display a wide variety

of behavior which make them attractive for digital transducer ap-

plications, orientation of dipoles, electrostriction, piezoelec-

tricity, ferroelectricity, optical and electro-optical phenomena,

and tunneling are some of the properties which are not found in

metals.

Dipole orientation in an external electric field is found in

some materials at their freezing points and in others below their

freezing points. Fig. 3 is taken from Wert and Thomson, Physics

of Solids, McGraw-Hill, 1964 which shows an example of each kind.

Molecules with permanent dipoles become oriented with the E vector

Just above critical temperature and rotation is hindered below

this.
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Electrostriction and piezoelectricity are properties of num-

erous crystalline solids such as quartz, Rochelle salts, ammonium

dihydrogen phosphate and potassium dihydrogen phosphate. These

materials have low crystalline symmetry, as contrasted with NaC1.

They display a polarization-strain behavior which is the basis for

numerous analog digital transducers.

Ferroelectric materials, such as barium titanate, and potas-

sium niobate have a spontaneous polarization when subject to strain.

The polarization is propagated by domain-flipping similar to fer-

romagnetism in iron. There is a nearly complete analogy, in fact,

because the ferroelectrics have hysteresis and a Curie tempera-

ture above which the effect disappears.

A digital transducer is readily conceived using the discon-

tinuities in dielectric constant of several materials. A capa-

citor which would have discontinuous changes in capacity with

temperature can be constructed with this effect. This has been

studied by the author and the result leaves much to be desired.

The discontinuities are evident, but so is hysteresis and an in-

tolerable analog drift between discontinuities.

The successful use of dielectric materials is felt to depend

upon using combinations of properties. Chapter IV describes such

a concept. The transducer action is provided by one effect and

the discontinuities are injected by another.
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II.

8. Band Gap Effects and Optical Transparency--Semiconductors

are transparent to wavelengths longer than hc/Eg where Eg is

the band gap energy, and opaque to much shorter wavelengths (h)

( 5 ). The transition region is fairly abrupt, as shown in Fig. 4.

The optical transparency changes two decades for a change of less

than 8% in the wavelength of light falling on germanium at 300°K.

The band gap itself is a function of temperature as shown in

Fig. 5. It is also a function of temperature and pressure, in

fact the piezoresistance of homogeneous semiconductors has been

studied quite extensively by Keyes ( 6 ). Furthermore, Rindner

and Braum studying shallow p-n junctions ( 7 ) showed anisotropic

elastic stress caused completely reversible resistance decreases

by several orders of magnitude Considerable reduction of the

breakdown voltage can be observed. The digital transducer concepts

which are suggested involve strain or temperature modulation of

the band gaps of selected semiconductors.

B. EXAMPLES OF PRACTICAL DIGITAL TRANSDUCERS

i. Digital Temperature Transducer Using Superconductin 5 Transitions

The best example of a proven high-speed reversible effect

which could be used as a digital transducer is the superconduct-

ing transistion with temperature and/or magnetic field. No dif-

ficulty would be experienced in constructing a transducer which

would produce sharp reversible steps in resistance over the range

0-20°K (or over the range 0-I00,000 gauss). A series of resistors,



-13-
6

each made from a different metal, would have a discontinuous

change in total resistance at each transition temperature. The

device pictured in Fig. 6 has 18 steps between 0.14°K and 18.2°K.

No essential technological limitations prevent the fabrication of

such a transducer. The actual transducer would be built to have

uniform steps in resistance by adjusting the length and cross-

sectional area of each leg. Some adjustment in the transition

temperature is possible to space the steps on the temperature axis.

The transition temperature of a thin film of metal'A can be shifted

toward that of metal B _f a thin film of B is deposited on top

of it.

Such a digital cryogenic temperature transducer would have

crisp transitions between the steps. For example the onset to

superconductivity in tin occurs within a few millidegrees.

2. Digital Cryogenic Magnetic Field Transducer--A completely

separate application of this transducer would be its stepwise

response to an external magnetic field at constant temperature.

At an_f given temperature each metal which is in the superconducting

state can be switched reversibly into the normal state in some

critical value of B. For example, at 3°K a digital cryogenic mag-

netic field transducer with series elements of Sn, Hg, Ta, Pb,

V, and Nb would have discontinuous responses at _010, .020, .045,

.068, .082, and .175 webers/m 2 respectively. Fig. 7 is taken from

Applied Superconductivity by Vernon L. Newhouse, John Wiley and

Sons, New York, 196h.
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These examples of true digital transducers are practical in

every respect; they can be fabricated without extensive new tech-

nology, they display crisp discontinuities which are reversible

and repeatable, no larg_ amount of external circuitry is involved,

the application itself insures the presence of the cryogenic envir-

onment, and the transducer should be able to withstand repeated

cycling if properly designed and fabricated. We plan to demonstrate

this transducer at a convenient date.

3. Commercial Digital Transducers--There are a few digital

transducers on the commercial market, but from the survey made

so far, they do not operate on a basis which clearly meets the ob-

Jectives of this program. They involve legitimate phenomena, such

as the frequency dependence of "water-hammer" upon liquid flow

parameters, or the number of interference fringes in an optical

system, but require considerable sensing apparatus.
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III. TUNNELING THEORY FOR MIS DIGITAL TRANSDUCERS

A. TUNNELING BEHAVIOR IN MIS STRUCTURES

A promising effect which is classified as an exhaustion

phenomenon is seen in tunneling between metal and silicon

separated by a thin insulator. A theoretical model describ-

ing the tunneling is presented along with experimental data

on both metal- metal and metal- silicon tunneling. The in-

sulator for the experimental devices was formed by polymeriz-

ing diffusion pump oil with 350 volt electrons by the process

described by Christy (8) and Mann ( 9 ).

Metal - metal tunneling was studied first in order to

establish the properties of tunneling through the polymer film.

The room temperature current-voltage characteristics of a

metal-polymer-metal sample are shown in Fig. 8 This device

was constructed by vapor depositing a stripe of al_ninum on

a glass substrate. A polymer film is formed over part of the

stripe. A cross strip of aluminum is then vapor deposited

to form a tunneling Junction. The current is in m_A and the

voltage in volts. The small circles are experimental points.

The X's are a fit of Stratton's Metal- Metal tunneling equation (10 b

The polymer of this sample is 80_ thick. Fig.9 illustrates the

room temperature current-voltage characteristics of a Metal

- insulator - N type silicon tunneling junction. This device

was constructed by forming the polymer insulator on a chem-

ically cleaned 60 ohm cm N-type silicon wafer.
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A small metal dot field plate was then vapor deposited on the

polymer. The insulator thickness is 80 _ as was the Metal -

Metal sample. (The current is in m_Aand the voltage in

volts as before. The small circles are experimental points.

The X's are points calculated with Stratton's equation with

the constants reduced approximately 10%from the metal-metal

fit. To account for the modulation of the forbidden band the

applied voltage is replaced by VA - VG, where VG is taken

to be 0.2 volts. The agreement is remarkable. A saturation

of the current for negative voltage occurs. Note that the

experimental curve follows the modified metal - metal equa-

tion up to the point of current saturation. The theory of

tunneling as developed by Stratton and modified to fit MIS

data are given in Section C.

Fig. l__0_0illustrates the results with a 100 ohm-cmP-type

silicon substrate. The X's are calculated with the samecon-

stants as with N-type silicon, but the voltage, VG, required

to align tunneling states, is increased from 0.2 to 0.55 volts.

The current saturation now occurs with positive voltage.

The current and voltage scales are the sameas on the pre-

vious N-type silicon slide. Whenplotted on a linear scale these

curves have the sameshape as those reported by Gray _l ) _2 ).

The saturation behavior of reverse-biased metal - silicon

tunneling can be explained in terms of exhaustion of the

surface states of the silicon. The high density of sur-

face states give the semiconductor a metal-like surface.

Whenan external voltage is applied, charge accumulates in
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the surface states. The electric field lines terminate on

this accumulated surface charge, therefore, the insulator

field is proportional to the applied voltage. As the exter-

nal bias is increased the charging of the surface continues

until the surface states are exhausted. Further increase in

the applied voltage creates either an accumulation layer or

a depletion layer in the silicon depending upon the conduc-

tivity type of the silicon and polarity of the applied vol-

tage. If an accumulation layer forms, then the insulator

field does not penetrate the semiconductor bulk and continues

to increase. Therefore tunneling current increases in an

exponential manner as before. If a depletion layer forms,

then the field lines terminate on ionized dopant states in

the bulk. The field now penetrates the bulk and the field

in the insulator levels off and approaches a constant. As

a result the tunneling current also levels off. The field

penetration occurs with positive voltage on P-type and neg-

ative voltage on N-type.

To verify this theory, we examined the effect of insulator

thickness upon the current saturation. The insulator field

at saturation is related by Gauss' law to the maximum charge

that can collect at the surface. The charge, Q, is dependent

upon the insulator thickness since the field plate metal and

the silicon transfer charge in order to align the Fermi level.

However, for small thickness changes, the maximum field is

approximately constant. Tunneling current is dependent upon

the insulator field, therefore, the value of the current
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at saturation is approximately independent of insulator thick-

ness since the maximum insulator field is constant.

To experimentally test this property three samples with

different insulator thickness were constructed on N-type

silicon with an aluminum field plate.

of the samples are 80, 100, snd 120_

characteristics of the three samples.

The insulator thickness

Fig.ll shows the V-I

The tunneling currents

are reduced due to the reduced field but the current level

at saturation is approximately constant. This is in agree-

ment with the model. To assign a point of saturation, the

V-I curves are extrapolated beyond saturation. The difference

in the extrapolated and experimental curves is taken to be

the voltage drop across the depleted layer of the semiconductor.

This voltage is plotted versus applied voltage for the three

samples in Fig. 12 . The voltage, V, is then taken to be

the applied voltage at which the extrapolated V line is
S

equal to zero. The field calculated with this VQ is found

to be approximately independent of insulator thickness as

shown in Fig. 13

This is taken as strong evidence in support of the pro-

posed metal - insulator - silicon tunneling model. Experi-

ments involving the variation of temperature and work function

of the field plate metal also provide verifying evidence.

B. SIGNIFICANCE OF MIS TUNNELING SATURATION

This phenomenon has several features which make it attrac-

tive. The behavior is reversible, that is there is no hysteresis
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effect, at least in the range of frequencies measured. There

is a frequency dependence, however, which is discussed in the

next chapter.

The discontinuity in the I-V curve is polarity sensitive

and is subject to several external parameters. Several of

these parameters are susceptible of being a "sensed" quantity

in the transducer application including temperature and light

intensity. Other internal parameters can provide the step

location; for example, work function of the field plate

area or thickness of the dielectric, and doping level of the

semiconductor. The exact shape of the discontinuity is not

yet completely understood, but it clearly is a function of

the surface properties of the semiconductor.
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C. TUNNELINGTHEORY

i. Metal-Insulator-Metal Tunneling--Electrons can pass

between two metals separated by an insulating film by at least

two processes, Schottky emission or tunneling. While there are

other mechanisms which invoke atomic scale properties of the in-

sulator, these two are well known in electron device theory.

Normal emission is the process which allows thermionic

or photocathodes to give off electrons in vacuum or gas tubes.

The electron must gain enough energy to leave its positively

charged nucleus in the metal surface. For the thermionic

emitter, where the temperature is high enough, a significant

number of electrons can exceed the work function. The emis-

sion can be enhanced by an electric field normal to the sur-

face. The increase in emission is called the Schottky Effect

and is an exponential function of the square-root of the field.

J = C_a El�2

This mechanism will be important in explaining some of the

charge transport through thin insulating films between metals.

It is represented by path (a) in Fig. 14.

Of more immediate interest, however, is a quantum-mechani-

cal process whereby an electron can pass through the insulating

film without overcoming a potential barrier. This phenomenon

is best understood in terms of the wave properties of the
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electron. Theories have been derived by Simmons(13) and

Stratton (14) which are similar in their results for MIM

tunneling. Wehave made an empirical approach to MIS tunneling

by modifying their expressions.

2. Metal-Metal Tunneling Theory

(__ Schottky Emission

vC_)l !

t "_')- --I-_ _,a. e',:_ Figure 14

The time independent wave equation is

. d_ * K[E - eV(x)]_ = 0

where E is the expectation value of total energy, and eV(x) is

the shape of the potential barrier.

Case I V(x) = VB = constant --This has a solution.

Case II. When V(x) is not a constant, which occurs when an

electric field is present in a solid dielectric, no closed

solution is possible. A WKB approximation assumes a solution

of the form

3. / = #E_JE =

This form is differentiated and substituted into the wave-

equation and real and imaginary parts separated.

_4

,
Z ,95 r//S -- 0
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which in turn leads to

Eq 3. is a solution only if 6. is satisfield. So far there

is no approximation. To proceed from here the WKB approxi-

mation is made for S in a power series in _2

S = So +_S i +_4S 2 + ...

7.

-- So' + _2sl + ...

= So'' + _2S I'' + ...

By dropping enough terms (those inl 2 and higher) one gets

8. (s)_(So) = _[(E-eV(x)]

9. s = so = _f_em[_-eV(x)]ax

Substituting 9. into 3. gives the solution inside the barrier.

The exponential term is the transmission coefficient D(Ex).

The current tunneling from one side of the barrier is the

number of electrons which impinge upon the barrier per second

times the transmission coefficient.

ii. dJx.= ev x D(Ex)n(Jx)d_, x

where n(Vx)dCx = density of electrons with velocities between

_x and @x + dVx

and in terms of the Fermi distribution, f(E);
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= _ f( where E total K.E.n(vx) E)dE = ,

O E = 1/2

Thus

h_e----_mfD (Ex )dEx_f (E) dE12. Jx = _3

Since current can tunnel from both sides, the net current is

13. Jx = D(Ex)dE x [f(E) - f(E + eV)]dE

_O _O

where the ener_ of electrons in the second electrode has

been shined by a bias voltage to eV.

13 is a starting point for most authors in the derivation of

M_ t_neling. The significant differences appear in the approxi-

mation of the tra_mission coefficient D(Ex). The principle

methods have been given by Si_ons and Stratton

Both equations of Si_ons and Stratton adequately describe

t_neling through thin oxide fi_s.

Stratton's Equation is used, which starts with

14. J = h3 _ [fl(E) - f2(E)]dE D(Ex)dE x

O

assuming

15.
x2D(E x) : exp [ [#(x,V) + EF - Ex]I/2dx

c/X 1
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where xI and x2 are the values of x where _(x) = Ex (classical

turning points)

_(x,V) = the barrier energy profile measured above EF

EF = fermi energy above the bottom of valence band

Integrating yields '

4_em
16. Jx = h3

Figure 15

Simmonsand Stratton agree to here.

The barrier profile with external bias goes from _o(x) for
eVx

zero bias to @(x,V) = _o + L

Stratton assumeselectrons near the Fermi level dominate the

tunneling transport, so he expands the coefficient of D(Ex)

in powers of ex = EF - Ex, or

17. £n D(Ex) = bI + ClEY + ---

and only the first _wo terms are kept.

This yields

B_c] kT (-bl) (l-exp (-cI v))

18. Jx = (clkT)_sin(_clkT) e

B = 4nem(kT)2/h 3
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Since bI and cI are functions of applied voltage, they are

expanded in a power series in V.

19.
bl(V) = bl0 - bllV + bl2V2 + ---

Cl(V) = Cl0 - CllV + c12V2 + ---

Stratton keeps the first 3 terms of bl(V) and only Cl0.

This leads to

20. Jx -Jo(2 c10kTJ)exp[IbllV_bl2V2 ) ( l_Cl0 v )

sin (_Cl0kT )

This can be further simplified for symmetrical barriers;

x = L/2, bll = 1/2 Cl0 , thus

2wc] okT

21. Jx = Jo _ sin(_Cl0kT ) exp [-bl2V2sinh _O_ ]

Temperature dependence

Since bl0, Cl0 and J0 are independent of temperature

21 can be written

22V = const.

where Jo _ J(O).

Jx(T)-_ J(O) + IT 2 + --- 23

Simmons results for Jx{T)._ agree with this.

= J(T)= J(O) _c]okT
sin(_ClokT)

Expanding the sine as a power series

3. Tunneling into a Semiconductor

Basically one expects at least two major effects, i,

the presence of the forbidden band would influence the voltage

scale to higher values, and 2, conservation of momentum require-

ments would influence the magnitude of the current to reduce it.
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An emperical expression is taken from Stratton

Jx = Jo sin(ncl0kT) exp-VG)2]sinh (VA-V_)]

d

where Cl0 < Cl0 and bl2 _ b12 and would be fitted experimentally

at first. VA = applied voltage and VG is the voltage required

to adjust for the relative positions of the Fermi levels in

the silicon and metal.

The data can be made to fit the curve which gives the

emperical expression some utility. The present state of know-

ledge on the tunneling between a metal and a semiconductor

does not permit much more to be done for the present. The

data is very precise but the range of voltages and thickness

can take the curves into regions where the theories may not

be valid. The effort which is now required should be directed

toward more basic understanding of the mechanisms governing the

transport of charge through thin insulating films.
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IV. TUNNELING DIGITAL TRANSDUCER CONCEPTS

A. PRELIMINARY DESIGN AND ANALYSIS

__ The volt-ampere characteristics

of a tunneling MIS device is

shown in the sketch. From the
¢

experiments conducted so far we_ Figure 16

can say this is but one member of each of several families of

curves. For a family in which work function is a parameter

the second sketch is typical, while the third shows a family

Figure 17

with temperature as a parameter.

Figure 18

There are other families

with parameters such as thickness, doping level and dielectric

constant. The digital transducers which will attract the greatest

interest are those with some parameter controlled by an external

stimulus. We are exploring those parameters to determine how

the solid state properties govern the detailed shape of the

characteristics.

The first generation digital transducer action is possible

by several approaches having one feature in common, it will

have a bias current or voltage, such as does an analog resis-

tanee strain gage. The second generation of digital transducer



-35-

action may not require a bias, a piezoelectric strain gage

is an analog example of such a device. The number of variables

4

in this investigation is large, and a rich field of possible

new electron devices seems to be open to development.

Several versions of MIS tunneling arrays could be construc-

ted to demonstrate digital action. A voltage-to-current or

current-to-voltage A-D converter is planned as the first mul-

tiple-step device. While it is a very elementary form of

transducer, it has digital response and may have some utility

as Just an A-D converter. While the development of digital

transducer concepts is the stated goal of the grant, a new

form of A-D converter which is compatible with integrated cir-

cuit technology would seem a welcome bonus.

The design of a three-step device is planned and may appear

in several forms as described below.

1. PRELIMINARY DESIGN

The tunneling curves shown in the previous chapter have

coordinates of log I and V, amperes and volts. An independent

group of parameters are; area, thickness of the polymer insulating

film, work function of the metal field plate and several parameters

characteristic of the semiconductor.

Area of these devices could readily vary over a range of l0 h to

l, with some adjustment possible after fabrication. No doubt

field plates 3 cm. in diameter could be deposited, and 0.3mm is

not regarded as a minimtuu. The fabrication problems are similar

to the state-of-the-art in integrated circuit technolo_-.
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The polymer insulating film is formed at a rate which

permits thickness control to close tolerances. More experience

will be needed before questions of uniformity and yield can be

posed and answered. At present no problems have appeared which

suggest any difficulty. Since tunneling current density is an

exponential function of the electric field, this is a very sensi-

tive method to scale the current level of the device. Transducer

action will depend upon the volume or thickness of the dielectric

film, so it is expected there must be some compromising done here

by the designer.

The field plate work function is a very sensitive parameter

in determining current levels. Wilmsen _5) shows the peak value

of conductance is a linear function of the difference in metal and

semiconductor work function. Some technological problems may

arise in depositing the various metals because of the high tempera-

tures needed to evaporate them. The work function can be

adjusted, however, by depositing two or more metals simultaneously.

This technique is not yet worked out in sufficierL detail to pre-

dict the effect on the current and voltage characteristics. The

number of pure metals which can be used to achieve different work

functions without causing fabrication problems appears to be adequate

for now.

The semiconductor substrate is the most complex material in

the device, giving the designer opportunities as well as problems.

Due to the low conductance of the tunneling process, semiconductor

doping levels will determine the current level largely through the

effect on the Fermi level. The amount of information available
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on this phase of the program is very large but not yet fully

analysed.

The finished device will be characterized by its high inter-

nal resistance, of the order of ten megohms. The range could be

several decadeson either side. This will mea- it would be

operated as a digital current source. The equivalent circuits

and circuit sysbols to be used will reflect this basic property.

In applying tunneling digital devices, their compatibility as

current sources in integrated circuits is considered to be an

advantage.

Configurations for a three-step A-D converter must incorporate

a feature to set the daturation current at three different and

definite values. The parameters mentioned above can be used

separately or in combination. In the examples discussed below

the devices are assumedto operate at constant and uniform tempera-

ture. The analog quantity is voltage and the digital quantity

is current.

a. Constant Thickness Configuration

A commonsubstrate of (N-type) silicon is coated with a

uniform film of dielectric. Field plates of metals with different

work functions are deposited. The areas are determined to give

the desired current scale. They are connected in parallel to

form the output current terminal. An ohmic connection on the

reverse face of the silicon wafer is the second terminal.
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IRI.......]

@

Figure 19

b. Stairstep Configuration

By forming the dielectric film in a different thickness for

each element a different behavior is expected. The point at

which the tunneling current saturates is dependent upon the

maximum charge collected in the surface states. The field in the

insulator also saturates, so the value of the saturation current

should be nearly independent of the dielectric film thickness.

With identical field plates the characteristics would look like

the figure.

t

I' l
I

1

o v,v %

I

V

Figure 20

This configuration may prove difficult to build, but has the

advantage of producing uniform current steps. Since the field is

proportional to the thickness of the insulator, the device will

saturate from left to right with an increase in the external

voltage. _ne resolution of the device depends on the number of

stages included. The technology of this "pyramiding" of insula-
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tion most likely would make this device difficult to build.

c. Isolated Devices with Different Biases

Construct several separate MIS devices, i.e. several units,

each with its own Si substrate, insulator and field plate.

All the units are of identical construction and similar electrical

properties. The units are ganged together by an external bias

network. The number of units and the construction of the exter-

nal network determine the resolution and range of the device.

T

r'; "i _T
1 I I

Figure 21

d. Isolated Devices on Common Substrate with Different Biases

This device would be an improvement on (c). A single sub-

strate will hold a uniform polymer film. Several field plates

of the same metal are deposited on the surface of the insulator.

These elements are then ganged together by an external bias

network as in (c). This particular configuration is appealing

due to its simple construction, size and ultimately, the ability

to build the external network into the device through thin

film component deposition techniques.

The construction of a device like (4) will determine whether

the depletion layer remains localized below the metal field

plate or spreads in the "oil spot" fashion. If the latter is

the case it may be contained by etching grooves between units
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to reduce lateral current, by wide interspacing of the field

plates on the substrate or by other methods.

2. PRELIMINARYANALYSIS

I .....

i,I
o

Figure 22

_3

q

The low frequency analysis of

a tunneling A-D converter is a

straight forward graphical pro-

cedure. We simplify the pre-

liminary analysis by selecting

an example which is conceptually

possible with either a device

using three work-functions

with constant thickness or

three thicknesses with constant

work function. The linearized

V

characteristics each give three

saturation voltages.

These devices connectedin parallel would display a step response

in current as shown by the diagrams below.

v

I,I,

_r

2

c

O
V, V_ V3

Figure 24 Figure 25

Attention is called to the change in current scale, which would

be the reason the steps of current on the linear I-V characteristic
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appear to break more sharply.

The tunneling device has a high internal impedance so the

load would be a device which is suited to a current input, such

as a bipolar transistor.

While muchmore remains to be done in this area, the results

of the analysis so far have been encouraging.
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B. Voltage and Frequency_Dependence of Metal-Polymer-Silicon

Thin Film Capacitors

The technique for studying the silicon-silicon oxide inter-

face with differential capacitance vs. dc bias data has been ex-

tensively utilized (16). The hand structure of the silicon at

this interface is effected by the oxygen present in the oxide.

If the oxide is replaced by a chemically inert dielectric, then

the MOS technique should reveal information more directly related

to the undisturbed silicon surface. If a suitable dielectric

could be found, the MOS technique could be extended to other semi-

conductors and serve as a method of studying semiconductor surface

preparation. One dielectric which holds promise of fulfilling

these goals is a thin polymer film as reported by R. W. Christy

(8) and H. T. Mann(9).

This paper discusses some of the properties that these poly-

mer films have been found to possess and presents some differen-

tial capacitance vs. dc bias data taken on aluminum-polymer-sili-

con samples. The silicon was 60 ohm-cm n-type; the same as used

in the MOS studies presented by J. R. Yeargan (17) of this labora-

tory. It was chosen in order that a comparison with his data

could be made. The results of these are not conclusive, but in-

dicate that it is feasible to utilize the polymer film in semi-

conductor surface studies.

The polymer film is formed by introducing a partial pressure of

diffusion pump oil into a vacuum containing the silicon or other

substrate. The oil molecules are adsorbed on the substrate and are

broken up into free radicals by a beam of low energy electrons,

Fig. (26). The free radicals then recombine into long interweaving



-43-

chains to form a solid _8,19. The polymer film strongly adheres to

the glass and silicon substrates used in this study. It is thought

that the film either forms a bond with the surface layer of

adsorbed molecules or that the process is self cleaning since the

electron beam will break the bonds between radical of most adsorbed

organic molecules.

The properties of the polymer film were determined by forming

metal-polymer-metal capacitors on optically flat glass substrates.

A base strip of aluminum is first vapor deposited on the glass.

Then a polymer film was formed over part of the strip. A cross

strip of aluminum was then deposited as shown in Fig. _7)- The

dielectric constant was determined by measuring the area, capacitance

and thickness of polymer film between the two aluminum strips. The

thickness of the films were measured with an interferometer using a

sodium lamp. The thickness measurement introduced error into the

dielectric constant determination; therefore capacitors with film

o

thicknesses ranging from i000 to 4000 A were constructed and the

capacitance per unit area plotted against reciprocal film thickness

as shown in Fig. (_. From this plot the dielectric constant was

found to be ,°.8 which is independent of voltage and only slightly

dependent upon frequency and temperature. The field strength of

the films was found to be in excess of 5 x 106 volts/cm.

One of the most important properties of a thin dielectric is

continuity. Since the polymer film is formed slowly, it should

be more uniform and continuous than vapor deposited dielectrics

such Si0 . To determine if the polymer film contains any gross
X

defects or pin holes, capacitors with polymer thicknesses of 67 to

o

200 A were constructed and the variation of current with applied

voltage was analyzed. The current as shown in Fig. (29) was found



-h4-

Substrate ...... "-_.,n_., }

Polymer Film ....."/ _ I
i j

i I
Electron Beam

i I

t !

'I

.I
!

Ano de ..... -._-----sir....
"!

Ii

Cathode ...... "" __---_--_I

Heater ...............

3oov 50v

Fig.26 Electron Gun Used to Form

Polymer Film

-/

Fig. 27

Metal-Polymer-Metal Capacitor

Base Aluminum Top Aluminum

\ 2 m°r

Substrate

O4

!

o

o

0

25O
G)

200 //_

150

I00 o//

50 ,

o 2 b, 6 8

(Thickness-._)-ix l0 b,

Fig. 28 Determination of Polymer

Dielectric Constant

i0



-_5-

to increase exponentially with voltage which is characteristic of

tunneling current. This indicates that ohmic currents which would

flow through any pin holes in the film are small. An electron

microscope picture of one of the films shows that a few pin holes

do exist but their size and number are small.

Metal-Polymer-Silicon Capacitor

To investigate the MOS technique with the polymer film termed

MPS, a film of the polymer was formed on 60 ohm-cm n-type silicon

wafers which had been lapped, etched with CP-4, and boiled in trich-

loraethylene and concentrated nitric acid. An aluminum dot was

deposited on the polymer film to serve as the metal electrode in

the MPS structure. To prevent mechanical disturbance of the polymer

film under the aluminum dot, a ball of indium-gallium paste was

placed on the dot and a probe point dipped into the paste as shown

in Fig. _0. The capacity measurements could then be made. The

capacity vs. de bias curves on the MPS structure have been found to

be of two types. The first type is shown in Fig. (39. The

curves indicate a slight p shift in the surface potential which is

considerably different from the strong n shift which is found with

a grown oxide dielectric. This is not surprising considering the

differences in the polymer and the Si02 dielectrics. Other researchers

have reported changes in the surface potential when the

ambient is changed. Buck and McKinn (2Q using a surface conduc-

tivity technique found that the surface of silicon is quite sensitive

to surface preparation. They found widely different surface poten-

tials after soaking the silicon in either sodium dichromate, boiling
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deionized water, HF or 10/1 - HN03/HF.

Moore and Nelson (29 also found that adsorbed films of sodium

dichromate produced changes in the surface potential. The curves

in Fig. (3_ show a strong dependence of capacitance upon frequency.

This frequency dependence is even stronger at liquid nitrogen

temperature, If the capacitive reactance is

calculated at a positive voltage of 6 volts, it is found that the

capacitive reactance is nearly constant with frequency as shown

in Fig. '(3_. The reactance of a 400 pf capacitor is also plotted

on the graph for comparison. This frequency independence could be

utilized in some interesting new types of filters. Series capaci-

tance and resistance were measured with a GRI615A capacitance

bridge. The series resistance decreased with frequency and the

resulting impedance over the narrow frequency range shown in Fig.

(3_ is Zeq Ro/_ - jR. Several other samples had similar fre-

quency dependence.

The second type of capacitance vs. dc bias curve on MPS

structures that has been observed is shown in Fig. _) and indicates

a strong n shift in the surface potential. These curves are more

typical of the Si-Si02 structure. The Type II curves do not have

strong frequency dependence as do the Type I. The change in the

surface states at zero surface potential varied between 2 X 1012

-2
and 6 X 1012 cm for the different samples. This is only

1012 1012 -2slightly higher than the 0.5 x to 1 X cm surface states

change reported by Yeargan _7) for grown oxides.
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IV. C. Surface State s , Trapping and MOS Capacitance

1. Introduction

The discussion in the preceding section is the results of

an experimental investigation on the circuit properties. The extra-

ordinary behavior of MOS capacitors leads them to have an unexpected

and very useful role in digital transducer systems. The explanation

of the frequency dependence is not yet available, but a reasonable

start has been made.

The "dangling bonds" appearing at the silicon oxide-

silicon interface will serve as "trapping centers" which have the

tendency to catch the electrons or make the moving electrons immo-

bilized. The residing charges and the associated surface potential

will affect the MOS capacitance in the following extent: a) Let

C = total capacitance per unit area of the MOS structure, _ss and Qsc

are charges per unit area residing in surface states and silicon

respectively, V = bias voltage, @s = surface potential then,

c = d(Qss + Qsc)
dV = cox (i- d_ ) 2hdV

From the above equation we can see that the capacitance is completely

determined by the ability of the surface potential to follow the

applied voltage or is a function of bias voltage, b) Associating

with the charging and discharging process of those surface states

we can define a time constant _. For low frequencies (_T<<I) the

surface states are able to give up and accept charge in response

to applied signal. The toal capacitance of the device is the sur-

face-state capacitance in parallel with the depletion capacitance.

For high frequencies (_>>I) the time constant is too long to permit
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charge to move in and out of the states in response to an

applied signal. The total capacitance is the oxide and de-

pletion capacitances in series. Therefore, generally the

capacitance of the MOSdevice will decrease as the frequency

increases. Physically, we can explain that the increase in

capacitance is due to the fact that surface states act as a

source of charge are located closer to the metal layer

than the charge in the depletion region. The second effect

serves a main reason to explain the frequency independent

phenomenonof MPSstructure. Other considerations which may

affect the value of capacitance will be mentioned in the

discussion of this report.
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2. BARDEEN'S THEORY OF SURFACE STATES

The theory of surface states was first proposed by

J. BardeenE22 _. According to Bardeen's theory, the binding

structure of semiconductor at the surface is different from

the bulk. In the bulk of silicon or germanium Crystals the

four valence electrons of an atom share the electrons of

the neighboring atoms and form the covalent bands which

bind the crystal together. Yet, the atoms at the surface,

where the crystal structure ends, will have some unused

valences or "dangling bonds." These unused valences have a

tendency to "catch" electrons which may pass by it in order

to form a complete covalent bond. The energy states intro-

duced by these unused valences electrons are the surface

states and the tendency to catch an electron is so called

"trapping." Thus, trapping can make electrons which move

in the body of the semi-conductor immobilized. Fig. 35 shows

Bardeen's theory of the Role of Surface States in Trapping

Induced Charge. In part a) eight electrons were shown being

trapped in the surface states. Note that an accumulation of

layer of electrons was formed below the surface. This layer

induces an equal amount of positive charge (the space-charge

layer) inside of the semi-conductor so that there is an

over all charge neutrality. In parts b) and c) the charge

density and energy distribution diagram were shown. When
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Fig. 35 Surface States Diagram, showing Bardeen's Theory of

the Role of Surface States in Immobilizing Induced

Charge.



the metal plate is charged positively, more electronsj

coming from the bulk of semi-conductor through the charging

circuit will be trapped by the surface states. In part d)

we can see four of these electrons go into the surface

states. Parts e) and f) are charge density and energy dis-

tribution diagrams for the modified system.
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o SURFACE-STATE DISTRIBUTION

The surface state can only exist in certain energy

levels (or regions). Figure 2 shows the surface state dis-

tribution observed for n- and p-type surface E2 _. It can

be noted that the surface states observed on n-type material

are quite different from those of p-type material. This

suggests that the background of doping is playing a signifi-

cant role in determining the nature of the surface states.

Conduction Band Conduction Band

Region of High
Region of Low ..f

r ,Surface-State

Surface-State _] ._ //_/_////J//./_.-_Density"_ /////__/'////_/ (Accept or type)Density _._ [.,
Cross-over "'

Region of Hig "._ Region of Low
Surface-State Y -.s ..... JSurface-State

Density -_ Density

(Donor type)

Valence Band Valence Band

N-type Surface-State

Characteristics

p-type Surface-State
Characteristics

Fig.36 Surface-State Distribution

From Fig. 36 we can see "the n-type surfaces exhibited

donor levels lying in the range of N 0.15 to "_ 0.45
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above the valence band; their density was found to vary

fromN 5 x i012 to N 5 x I013 states/c_'/_ • The p-type

surfaces exhibited acceptor levels lying _ 0.15 to N 0.45e_

below the conduction band; their density was comparable with

those observed on n-type surfaces."
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1 OXIDIZED SURFACE

It has been found that the surface states are of great

importance in determining the reliability of semiconductor

devices _4_. The idea of using insulators on the surface

was generated with two major reasons: a) to study the sur-

face phenomena, b) to control the surface conditions--this

also means to control the stability and reliability of semi-

conductor devices.

A fundamental approach is the growth of an oxide

(insulator) over the semiconductor surface. Lindmayer and
r

Wrigley have listed three advantages of this oxidized surface

and explained why it has been widely used. Since it is not

related to the main purpose of this report the author will

not discuss those advantages. Although the growth of

dioxide over the semi-conductor surface is a pretty involved

problem; for example, there are directions of motions of

donors and acceptors and also there is disturbance of the

inter face due to the potential difference between two dis-

similar materials. Yet, the _hor does want to point out

that the surface states or traps still exist in the oxide

or interface. This is also the reason why the author can

tie together the surface states, trapping and MOS capacitance

in a single report.

The following figure will show the energy diagram of

an oxidized, intrinsic silicon crystal.
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Fig. 37.

--[-

m N

_xlcle

An Interface Between A Polycrystalline Oxide and

A Semiconductor Crystal.

_which

It is worth noting here that the MOS structure3 will be dis-
A

cussed later all refer to a growth of oxide on the surface

of N-type silicon crystal.
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o STATISTICS OF RECOMBINATION OF HOLES AND ELECTRONS

Bardeen's surface states theory emphaslzed the trap-

ping as electron capture of surface states. Shockley and

Read showed that electron emission, hole capture as well as

hole emission were also basic processes involved in recom-

bination by trapping_5_. The following Figure shows the

way in which holes and electrons may be recombined through

the traps.

IT
+

Ca) (b) Cc)

Fig. 38.

I
(d)

The basic processes involved in recombination by

trapping; (a) electron capture, (b) electron emission,

(c) hole capture, (d) hole emission.

The basic formulas associated with the above process also

had been derived by Shock!ey and Read.

a) Electron capture process.

It can be easily understood that such factors as the

probability that a trap is empty, the number of trapping

centers per unit volume, the probability of available electrons

passing by a trap, etc., will surely affect the rate of

electron capturing.
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Let _ - the number of trapping centers per unit volume

_F{ - the probability that a trap is empty

NCE)J_ = total quantum states per unit volume in the

energy range dE.

_(E) = the probability that a state of energy E being

occupied.

V - the speed of the electron

A = the cross section for capture by a trap

Then Cal_) = average of

- the average probability per unit time that an

electron in the range dE be captured by an

empty trap.

Then, the rate of capture will be

b) Electron emission process.

Let _ = the probability that a state is empty

_t = fraction of traps occupied by electrons

e_ = emission constant corresponding to

_t = effective energy level of traps

where _p and _ are the degeneracies of an empty and

full trap respectively.

Then, the probability that an electron been emitted from

the trap is

7JrAir AJ(E) dE
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The net rate of capture (that is capture minus emission)

for the energy interval dE is

The total rate of electron captured is

where Ec is the bottom of conduction band.

An entirely similar expression may be derived for (_p , the

net rate of hole capture.

Applying the above principles Shockley and Read showed

that for the nondegenerate semi-conductors

where

= density of electrons in conduction band

27

_ = effective density of levels for conduction band

similarly

s

29
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, CAPTURE CROSS-SECTION ESTIMATE

From the Shockley and Read statistics previously

discussed we understood the capture cross section of a trap

A, played an important role in determining the rate of cap-

ture (or recombination) of electrons and holes. Laurence L.

Rosier showed that this capture cross section A could be

expressed as

where 9_" = intrinsic carrier density

= surface potential relative to the bulk in

units of

AJs_ = surface state density

V_ = thermal velocity of electrons and holes

_r_x = max. surface recombination velocity.

No = bulk doping in the n-type epitaxiai layer, d_ °_

_o = the equilibrium hole concentration in the

bulk of semiconductor

A_ - the injected carrier density in the bulk of

the semiconductor.

measurement technique Rosier found out _ :

c,,_/_ and the capture cross section had been

_,r__._.t,_ .

Bya C.-V

estimated _-- _X/o
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Instead of using C-W measurement technique Heiman

and Warfield, by a quantum mechanical theory approach,

proved that the effective capture cross section of an oxide

trap viewed by a carrier at the semiconductor surface is a

function of location of the trap from the interface _6_.

From the equation derived by Heiman and Warfield,

where Ao = the capture cross section of a trap at _ = o.

_ = reciprocal of penetration depth of the electron

_e understand the capture cross section of a trap located a

distance x from the interface into the oxide is reduced by

the factor _-_.
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. A PSEUDO-FERMI FUNCTION AND FIELD DEPENDENCE OF SURFACE

STATE DENSITY

A so-called pseudo-Fermi function in the variable

was derived by Helman and Warfield. This equation gives the

probability that a trap will be filled in a measurement

time, Tm. The following is the equation,

where _¢ (_, _r) = the probability that a trap will be

filled or the average fraction of traps occupied by

electrons.

/V# = the number of trapping centers per unit

Volume or the number of available (empty) traps.

_(_) = Fermi Function

tf = effective energy level of traps

_({'_): / -- e< F E- C-aK°(_- _) I 33

_,_ = a distance from the interface associated with

measurement time, Tm.

!
- 34:_ /'f o

_v> = average thermal velocity of the electron

_ = the electron density at the surface

p, : d e-?c t-E, o)

i-Uo = top of valence band at M = 0

: (KT) -I
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Heiman and Warfield also showed that the density of

surface states depends upon the electric field

oxide.

Eo _ in the

e Eox

where Eo_

discussed later in this report.

: electric field in the oxide and will be
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8. CAPACITANCE OF AN M0S STRUCTURE

After we have investigated the surface states and

trapping associated with the MOS structure we will be able

to discuss the frequency and bias voltage dependence charac-

teristics of the MOS capacitor. Befor@proceeding with the

details of the discussion the student would like to intro-

duce two equations derived by Heiman and Warfield E2 _.

These two equations will give us a general idea about the

MOS capacitance.

36

37

where s$ is the charges per unit area residing in

surface states or charges been trapped by the

oxide traps.

_ = the charge per unit area in the silicon.

C = total capacitance per unit area of the MOS

structure.

V = applied bias voltage across the structure.

_s = surface potential it depends upon the charge

surface distribution.

_s_ = the total number of filled traps per unit sur-

face area.
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Cox = the oxide capacitance per unit area.

Vss = voltage equivalents of Qss is a function of @s and V.

From first equation we see that the capacitance is completely

determined by the ability of the surface potential to follow the

applied voltage, or is a function of bias voltage. Since the quan-

tity dVss/d s will depend on frequency, then Cox as well as C

all become frequency dependent. Although it is impossible to

eliminate the surface states at the silicon silicon-oxide interface,

it will be easeir to understand the effect of surface states on the

MOS capacitance by first assuming that there are no surface states

existing between the Si-Si02 interface. The development will fol-

low L.M. Terman (27) to establish the capacitance and its equi-

valent circuits with and without surface states involving.

a. Surface States Absent

An energy levels diagram between the metal, silicon oxide

and silicon with zero bias voltage can be shown as follows (we

also assume the work function of the silicon, @s is larger than

the work function of metal, _m).
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ox;c[e s;I;_-°"-

Fig. 3_ Energy-band picture of MOS capacitance, for __ ,

zero applied voltage.

As mentioned before, the thermal oxide

on ordinary silicon produced sufficient donors at the

silicon, silicon-oxide interface to make the surface _ -type.

Thus an accumulation of negative charge in the silicon at

the interface appears. As a result, a field, _-_ must exist

in the oxide which terminates on this negative charge.

From the above diagram it also can be easily under-

stood that the total differential capacitance of the MOS

device will consist of two capacitances in series; that of

the oxide layer, and that of the silicon surface. The oxide

capacitance may be determined solely from geometry, and is

given by _×

where _o, is the dielectric constant of silicon oxide

and wJox is the thickness of the silicon oxide. The
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capacitance of the silicon surface depends upon the distri-

bution of net charge at the silicon surface as a function

of the voltage drop across thesilicon.

from the expression

It can be calculated

where ___-_

7%; = the electron concentration in the silicon at

room temperature.

_ = the potential drop across the silicon.

b. Effect of surface states.

The existence of surface states complicates the theory

for the MOS capacitance. The space-charge densities and

displacement current distributions appear as in Fig. 40.

Garrett and Brattain had found,

- d Vs

where Q_e_ is the net excess charge at the silicon sur-

face and Vs is the voltage drop across the silicon.

At room temperature and by assuming a) all impurity

atoms are ionized everywhere b) the silicon is not degenerate
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aJk oj c_e _t

o×;de s;[,_o_.

Space-change density and displacement current dis-

placement current distributions for the MOS capacitor.

With charging and discharging those states a time constant

can be defined. Let@_(e)as the charge in the surface

states at time t. and (_soc¢)as the charge that would be in

the states at time t if equilibrium conditions were reached

then the time constant is defined as

Jt - T

Note, if the surface potential of the silicon varies with

time, then (_so will also be a function of time.

When the potential at the surface of the silicon is

disturbed, the total charging current to the surface of the

silicon will be the sum of the current which charges the

depletion region in the silicon, and the current which
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charges the surface states. Thus

d_ I Jc_s t/

The admittance of the first term is just the admittance of

the capacitance of the depletion region which has been cal-

culated previously. The admittance of second term can be

obtained by making the usual small-signal approximations

for quantities varying si_isoidally in time. After doing

this, Terman derived the admittance per unit area of the

whole MOS device would be

y-i /I o. , _,eo----_-- dVsJ li'j_J'Y ] I
4O

The equivalent circuit corresponding to the above equation

is given in Fig. 7.

0

(C)

Cox

° _t

cd)

--'0

Fig.41. Equivalent circuits for the MOS Capacitor.
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In Fig. 41 (b) it shows the high frequencies (w_->_l) equi-

valent circuit it is just the oxide and depletion capacitances

in series. This happens when the time constant is too long

to permit charge to move in and out of the states in response

to an applied signal. The small signal equivalent circuit

will be one as if there were no surface states present.

Fig.41 (c) shows the low frequencies (oJ_1) equivalent cir-

cuit. Here all the surface states are able to give up and

accept charge in response to the applied signal. The total

capacitance of the device is increased as the surface-state

capacitance is in parallel with the dep]etion capacitance. At

intermediate frequencies (_JT_I)part of the surface state

charge will contribute to a small-signal measurement, and

the observed value of capacitance will lay between the low

and high frequency values. Therefore, in general at a given

applied voltage the capacitance will decrease as the fre-

quency increases. Physically, we can explain that the

increase in capacitance is due to the fact that surface
are

states acting as source of charges which_locatedcloser to

the metal layer than the charge in the depletion region.

The equivalent circuit of Fig. 41 (a) corresponds to

the ideal device. An equivalent circuit which includes the

effect of series losses in the bulk resistivity of the silicon

and the d.c. leakage through the oxide and depletion region

is shown in Fig. _i (d).
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The depletion capacitance, Co will vary directly with bias

voltage. The resistance and capacitance due to surface

states may vary indirectly in the following way. Consider

Fig.42; at room temperature for a good approximation we

can assume that all the states above the Fermi level will

be empty; all those below will be occupied. Defined

as shown in Fig. 42. Then for a small signal measurement

only those states at the neighborhood of _#(5) will be

affected by the applied signal and will hence contribute to

the values of _s and 05 measured. By varying the bias it

will shift the value of _F(S)and then, affect the distribu-

tion of surface states and their time constants.

V'_L'e = VI -x

_F

Fig. 42

Occ_p;e_ " L:'-FLs) _J,co_
EF

VA?r > V,

Effect of bias voltage on Surface-states Occupancy.

* is defined as the value of applied voltage which

will straight out the energy bands in the silicon to the surface.
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Following along the line of Terman's work Lehovec

and Slobodskoy have also derived equivalent circuits for

the MOS device. In their equivalent circuits the Boltzmann

distributions of carriers in the space-charge layer at cur-

rent flow, the loss angle, the extreme cases of negligible

and infinite recombination rates as well as frequencies and

bias voltages are taken into account _. A simple physical

model which gives excellent agreement with the experimental

observations at high measurement is also presented by Grove,

Snow, Deal, and Sah E30_.
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9. Discussion

From the above studies about surface states and trapping

we can understand qualitively the frequency independent nature of

the M0S impedance. Yet, we must point out the thickness of the

silicon-oxide layer of the MOS device we have observed is greater

o

than 200 A. For the silicon-oxide layer less than 200 A the

tunneling between silicon and the metal will play an important role

in the V-I (Voltage vs. current) characteristic as well as impedance

of this MOS device. The surface of silicon is also quite sensitive

to surface preparation. Buck and McKinn (20) found widely different

surface potentials after soaking the silicon in either sodium

dichromate, boiling deionized water, HF or i0/i - HNO3/HF. Moore

and Nelson also found the changing of surface potential due to

adsorbed films of sodium dichromate(21). Clearly the detailed

understanding of the tunneling digital transducer will not be

complete until more work is done in this area.



D. Impurity Distribution at the Silicon Surface

The variation of the depletion layer capacitance with voltage

is dependent upon the impurity and defect distribution in the semiconduc-

tor as illustrated in Fig. 43 for an abrubt junction diode. A semi-

conductor surface is disturbed by many defects which penetrate a finite

Depl eti on

Layer

Abrupt Juncti on /

/
-

_Electric Field Line

Figure 43 Impurity-defect distribution in a semiconductor.

depth into the semiconductor bulk. These defects may cause a non-homo-

geneous distribution of localized states in the bulk near the surface.

The MIS tunneling junction offers a possible experimental method of

determining this distribution. The analysis which follows first dis-

cusses abrupt PN junctions and thick insulator MIS structures. This is

followed by an analysis of thin MIS structures which utilizes the point

of tunneling saturation to determine the voltage at which the surface

states are completely filled.

For an abrupt junction PN diode, Schottky 31 found that the

reciprocal depletion layer capacitance increased linearly with the

square root of the voltage across the layer. This square root
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relationship has been verified many times, e.g. Giacoletto_ 2 Gar_c

and Brattain 33point out that the assumptions which produce the square

root dependenceare clearly met by a reversed biased PNjunction but not

completely by the surface of a semiconductor. Fig. 45 is a plot of

(I/Csp) 2 versus applied voltage for the N-type MIS capacitance-voltage

curve of Fig. 44 • Csp is the space charge (depletion) capacitance calcu-

lated from the measuredcapacitance using the following equivalent

'I IF-- circuit: o i .

Ci Csp , Ci = Insulator capacitance.

If the depletion layer followed a square root relationship, as does an

abrupt PN junction, then the curve of Fig. would be a straight line.

Lehovec, et al'_ and Terma_5 reason that the depletion layer capaci-

tance of an MIS structure follows the square law relationship but the

charge which collects in the surface states prevents the manifestation

of this fact in a simple (I/Csp)2 versus applied voltage plot. In a

back-biased PN junction all of the applied voltage appears across the

depletion region. In the MIS structure, however, the applied voltage is

divided between the insulator and the depletion layer. How the voltage

divides depends upon how the charge collects in the surface states.

Lehovec assumes the MIS equivalent circuit to be:

where: CI the Insulator capacitance

Csp = the space charge capacitance

Css = the capacitance associated with the
charge collected in the surface states.

If the total capacitance is measured at a high frequency, the charge in
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the surface states cannot follow the ac field, hence the contribution of

the surface state to the total capacitance is not known with confidence.

However, Lehovec assumes the high frequency equivalent circuit to be:

Ci Csp

The measured capacitance, Cm, is:

(41) I 1 1

- + -- and Csp=CmC i

Cm Ci Csp Ci-Cm

Lehovec then assumes a form of the Garrett and Brattain square root

equation (which assumes a homogeneous distribution of impurities).

(_noe2_ I/2 1 - exp(____)

kT - kT A

where: Vsp = voltage across the space charge region

no = bulk electron concentration

e = electronic charge

¢ = the dielectric constant.

Note that Vsp is negative which leads to Eq. (41) for eVsp>>l.
kT

_RC_I/2 1/2
(43) Csp = Vsp-

From Eqs. (39) and (40) the voltage drop across the depletion layer can

be calculated. With Vsp known, the space charge, Qsp' can be subtracted

from the total charge. This difference is attributed to the charge

collected in the surface states.

Since the square root depletion layer equation is known to be

valid for depletion layers within the bulk silicon, Lehovec's formulation
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seems reasonable for a depletion layer which has penetrated the bulk.

This permits calculation of the surface state charge as a function of

applied voltage. However, surface defects may penetrate the bulk silicon

and create a non-homogeneous distribution of localized states which will

give rise to a non-square root C-V relationship. At low voltage the

impurity distribution analysis is complicated by the collection of charge

in surface states. At higher voltage the surface states are filled and

the C-V relationship is directly related to the impurity and defect

distribution. The dc voltage at which the surface states are fully

charged can be obtained for thin insulator MIS structures from a tunneling

current curve for the same sample. The point of current saturation

corresponds to the point of filled surface states and can be found by the

method of Fig. zm. For sample #30si, the voltage at saturation, Vs, is

2.4 volts. Subtracting Vs from the applied voltage, VA, and plotting

(VA-V s) versus I/Csp on a log-log scale (Fig. 52) yields the relation:

1 _ B(VA_Vs)O. 8
Csp

where: B = constant

VA = applied voltage

Vs = saturation voltage

Csp = depletion layer
capacitance

Giacoletto 3Lanalyzed the C-V relationship for abrupt junction

diodes with an arbitrary impurity distribution. Using Giacoletto's

results, the impurity-defect distribution at the silicon surface of the

MIS structure can be found. The analysis proceeds as follows:
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1 _ B,VA_Vs,___ W
Csp - A_

where : W = depletion layer width

A : area

¢ = dielectric constant

= slope of the log-log C-V curve.

(44)

Giacoletto's expression for the impurity distribution, I(x), in the x

direction is:

d(VA-Vs)I
dW W= x(45) I(x) :

eni x

where: e = electronic charge

ni : intrinsic electron density.

Substituting Eq. (44) into Eq. (45) yields:

(46) l(x) -
c ( 1B__._)l/a I/c_- 2en i (x) : constant (x)I/_

-2

From Fig. 46, _ = 0.8. Therefore the impurity-defect distribution for

sample #30si is, I(x) = constant x -0"75 which is sketched in Fig 47

o
X _

Figure 47. Impurity distribution of sample #30si.
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The surface is shown to have a high impurity-defect density. This

density decreases with penetration into the bulk. It is expected that

l(x) would approach a constant atla sufficient distance from the surface

where _ = I/2 and l(x) = cont.x I/'---_-2 = const.

The above solution is dependent upon the choice of Vs which

determines the exponent _, Also the location of x : 0 is not known.

However, the above method seems to be valid and opens the door to a means

of investigating impurity-defect distributions at a semiconductor surface.

The method may be particularly useful in examining the MIS system with a

thermally grown oxide since the oxidation process can change the surface

doping density by diffusion redistribution of the impurities and by

impurity rejection from the oxide_ 7 It may also be possible to determine

the depth of surface damage by correlating the voltage at which the

capacitance begins to follow the square root law relation.
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V. THIN FI_4 RESEARCH

To insure an adequate back-up to the effort on" MIS _unneling a broader

program of basic thin-film research has been undertaken. The objectives

are to develop digital transducer technology, to get a more fundamental

understanding of the physical and chemical processes, and to increase the

number of useful phenomena which may be exploited for digital transducer

action. The progress along several lines is described in this section.

A. D_el0osition of Silicon Nitride on Metal-Coated Substrates

A metal-insulator-metal structure, using the dielectric to be studied

as the insulator, offers the best method of studying the electrical pro-

perties of thin dielectric films. This silicon nitride study included

films Of thickness varying from 500to _000 _ngstroms on molybdenum-coated

quartz plates. The reaction of si!ane and am._onia in a hydrogen atmosphere

at temperatures from 600 to 900°C deposits the Si3N 4. The apparatus ma-

terials include only teflon, stainless steel, graphite and quartz. A re-

sistive graphite substrate holder heats the substrate. Typical flowrates

are 2000 std. cm3/min for hydrogen, 150 std. cmB/min for ammonia, and i0

std. cmB/min for silane. Deposition rates range from i00 _/min depending

on temperature and flowrates, to i000 _/min. The resulting films exhibit

resistivities of the conduction component at high fields which are stable

and reproducible.

B. I-V Characteristics of Mo-Si_Nd-Metal Structures

I-V data form a straight line over as much as four decades on a Sch0ttky

plot for thin films of vapor deposited silicon nitride in a metal-insulator-

metal configuration. Thickness variations, activation energies, and dif-

ferent m_als for electrodes indicate a bulk limited process. Current
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variation with temperature is typical of thermal emission processes. These

considerations suggest a transport mechanism similar to the Poole-Frenkel

effect.

C_ Theoretical Program o_n_nExotic Dielectrics

The search for natural phenomena related to the digital transducer

necessitates concurrent research into exotic dielectrics. Chemical vapor

deposition (CVD) provides an efficient means of obtaining such exotic

dielectrics. Controlling parameters in an atom-by-atom deposition pro-

cess yields tailor-made materials having desired combinations of physical_

thermal, and electrical properties. In order to be useful in this pro-

Ject the film must be thin, uniform, reproducible, virtually pin-hole

free, homogenous, and must passivate the surface of the semiconductor, pos-

sess high stability, high breakdown voltage, and low dissipation or loss

mechanisms. In particular, freedom from hysteresis effects would make it

a welcome transducer material.

One of the immediate aims of this research is the production of an

insulator with a high dielectric constant. In addition to the great value

of such a material in microcircuits for higher capacitances in integrated

circuits and higher gain in field-effect-transistors, such a material would

provide much more responsive transducer action since the high dielectric

constant would cause more current for greater tunneling. The pyrolysis of

metal alkoxides constitute one basis for the CVD technique yielding thin

film insulators with high dielectric constants. Thin films of titanium

compounds offer desirable dielectric properties; i.e. Ti02, e = i00;

BaTiO3, e > i000.
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Clevite Research Corporation in working with Sandia Corporation (38)

has concentrated almost entirely on lead titanate zirconate polycrystalline

materials in their research on piezoelectric materials_ Barium titanate

was the first piezoelectric ceramic. It is capable of attaining permanent

or nearly permanent polarization. Other forms of this may have stronger

distortion, larger electric moment, and may be capable of being mistreated

in a variety of ways and still remain strongly ferroelectrie.

The digital transducer requires a dielectric that reacts to ambient

stimuli such as light, radiation, pressure, or temperature. Barium titanate

exhibits a marked discontinuous change with temperature. The insulator for

the digital transducer need not exhibit such a discontinuity but may react

to external stimuli in an analog fashion. Stress-strain changes would

also be important. A purer dielectric should also make the step in current

versus applied voltage much sharper. In addition such exotic dielectrics

should exhibit different optical properties. Light might cause discontin-

uties or changes in the dielectric constant or in the current.

Chemical vapor deposition offers a technique for depositing films with

the above properties which has several advantages over other techniques.

Much versatility is possible since films can be deposited on metals or

semiconductors. The dielectric film should be very homogenous since the

reactant emanates from a source with preservable integrity. A sharper,

cleaner interface can be expected since inter-diffusion is not necessary.

The composition of the film can be controlled independently of the compo-

sition of the substrate. The processes involved generally can be carried

out at lower temperatures than those required for deposition from inorganic
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systems. The reactant and product vapors of the organic systems are us-

ually less reactive and corrosive than those of the inorganic systems.

The organic reactions may be more suitable for the preparation of high-

purity oxides. Anisotropy of properties (thermal, mechanical, and elec-

trical) are possible in materials that achieve a preferred orientation.

In CVD advantage is taken of the formation of the deposits in atomic or

molecular steps to obtain strong anisotropy of properties. This character-

istic of CVD offers a tremendous potential for forming materials with spe-

cific properties and it can also give rise to useful and unique nonlinear

effects. In addition, layer structures could be formed to take advantage

of their unique electrical properties due to surface and composite layered

characteristics.

Thus through chemical vapor deposition exotic dielectrics can be pre-

pared with useful transducer properties.

D. Ionic Diffusion in the AI-AI203-AI Structure

The behavior of thin film devices is expected to be very sensitive to

the interface between the dielectric film and a metal overlaying layer.

Diffusion of metal atoms or ions into a dielectric film could have a sig-

nificant impact upon the characteristics of thin film digital transducers.

Wortman and Burger (39)studied the AI-AI203-Au system at elevated

temperatures. Air ambient supplied gaseous oxygen for diffusion through

the gold electrode. They observed an open-circuit oxygen ion current in

the mieroampere range. In this study of ionic diffusion in the AI-AI203-

A1 system, the al_minum concentration gradient that exists at the upper

interface produces the diffusion potential. The AI-AI203-AI structure
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forms from vacuum deposition of the lower electrode, thermal formation of

the oxide, then deposition of the upper electrode.

After cleaning a soda lime glass substrate by vapor degreasing and

ultrasonic washing in deionized water, contact pads of DuPont silver paste

are baked on. Placing the substrates in the Varian Associates vacuum sys-

tem precedes pumping to i0 -II torr range by sorption, sublimation and ion

pumping. Electron gun evaporation produces the aluminum lower electrode.

The aluminum oxide forms thermally from dry oxygen admitted to a pressure

of 40 to 50 tort while infrared quartz lamps heat the substrate to 550°K.

Pumping to low pressure precedes a second evaporation which forms the upper

electrode at room temperature. A rotating specimen mount holds st_strates

insix sequential positions during the various steps of the process. The

resulting sandwich structure forms an electrochemical cell of 0.4cm 2 area

with the bottom electrode positive. A Keith!ey millimicrovolt meter mea-

sures the short-circuit current by indicating the voltage across a i00 ohm

shorting resistor.

After the structure has been formed, four atomic concentration gra-

dients exist; an oxygen and an aluminum gradient at both the upper and lower

AI-AI203 interfaces. The lower interface is thermally grown and both the

aluminum and oxygen concentration gradients are near equilibrium. At the

upper interface, an abrupt concentration change exists for both oxygen and

aluminum. Barrer (40) and Smithells (41) show no measurable oxygen diffusion

through a!umim_, because oxygen is insoluble in a!tunin_m. Figure 48

shows the one remaining aluminum gradient of importance at X = 0.

Because of the abrupt aluminum concentration gradient at X = 0, gra-

dient induced diffusion _ill cccur if left unimpeded. Jost(42) points
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out that the conditions are much more favorable for ionic rather than atomic

diffusion, lons moving through an insulator produce a current which deter-

mines the nature of the diffusion process.

When the two electrod@s are short-circuited, electron current flows

to balance the movement of the ions. Any charge attempting to accumulate

on the electrodes drains off through the external circuit. Since no charge

builds up on the electrodes, the ionic diffusion proceeds unimpeded by an

electric field.

The diffusion process must follow Fick's second law. A useful solu-

tion to Fick's law is:

C(X,t) = C + {(C s - Co)/2} {I - erf[x/2(Dxt)i/2]} 47o

C - Concentration

C - Concentration of A1 in Aluminum oxide
o

C - Concentration of A1 in upper A1 electrode
$

X - Distance

t - Time

D - Diffusion coefficient in X direction (asa_imed constant)
x <

R

This is a standard Gaussian error-function-form solution for this

particular problem. Writing equation (V-l) in the form of a Taylor series,

taking the derivative with respect to X, and evaluating at X = 0, gives

the solution to Fick's law and yields the short-circuit current of the

cell:

Ise : -[QiAI_] [(C s - Co)/2] iDx/t]i/2 48
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Where:

I
SC

Qi

A

= Short-circuit current

= Charge of diffusion particle

= Active area of cell

Jost (_2J derived the following expression for the diffusion coeffi-

cient of the vacancy diffusion mechanism.

Dx = (d/B) (kT/2nm) I/2 exp (-8/RT) _9-

Where:

d - Interatomic distance

k - Boltzmann constant

m - Mass of diffusing ion

8 - Activation energy

R - Universal gas constant

T - Absolute temperature

Equations h8 and h9 define the short-circuit current. Required quan-

tities are absolute temperature, ionic mass, nearest neighbor distance, ionic

valence, and activation energy.

All of these quantities are fairly well known except the activation

energy. Dignam _3 ) determines the activation energy for AI203 by anodic

polarization measurements. In the model presented here initial calculations

use his value of !.76eV. See Figure 49 Dignam's value does not accurately

describe the present study'because he employs anodie measurements in aque-

ous solution causing the presence of water as well as high electric fields

in the oxide.

Figure _9__ shows the short-circuit current plotted against t -I/2 for
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the six samples measured and two theoretical curves for an activation en-

ergy of 1.76 and 1.60eV. Note the points describe straight lines to sup-

port the t -I/2 time dependence predicted by equation (h8). However, both

slope and intercept differ from the 1.76eV curve. The slope discrepancy

is corrected by using a new activation energy of 1.60eV to an accuracy of

+
- .02eV. The difference of this value and the value determined by Dignam

arises from the different fabrication and measurement techniques employed.

• The nonzero intercept appears to result from "aging" of the samples during

heating and while measuring adjacent specimens, and from thermal voltages

due to small temperature gradients in the specimen substrate.

This work demonstrates the technique of observing interface diffusion

by simple electrical measurements. The experiment yielded an activation

energy for the diffusion of aluminum into al_min_m oxide of 1.60eV _ .02eV.

The technique should apply to any system where both contacts can be made

of the s_me metal to avoid thermal potentials. Extension of the technique

to include the time variation of electrode potential and the thermal poten-

tial from different electrode metals requires additional study. The exis-

tence of ion diffusion effects at room temperature can now be expected to

occur at a very low rate, but additional work will be needed to assess the

importance of this phenomenon upon digital transducer action.
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VI. PROGRAMFORTHESECONDSIX MONTHS

A. PHYSICALPHENOMENA

Developments in solid state physics in recent years have shown

an increasing number of new phenomena. These include the Knight Shift,

the Gunn Effect, Josephsen Tunneling and several others which are not

yet identified by a popular name. These will be added to phenomena

presently being studied to determine how they might be exploited for

digital transducer effects.

B. TUNNELING THEORY

The analysis of the tunneling digital transducer is still

deeply rooted in fundamental understanding of the transport of charge

through thin insulating films. Our particular program is only a small

part of the total national effort in thin film and surface properties

of solids. A large fraction of our effort will be in monitoring the

latest research results and contributing to them as the need for new

knowledge is felt. Specifically, we will be analyzing charge transport

through films from 50 _ to 5000 _.

C. TUNNELING DIGITAL TRANSDUCER CONCEPTS.

The greatest effort will be in the search for properties of

materials which will make them suitable to be incorporated in tunneling

digital transducers. In particular we will be separating semiconductors

and metals by dielectric materials with characteristics which are influenced

by external effects and give the TDT the desired discontinuous input-

output characteristics. We will continue our studies with polymer films
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and vapor deposited Si3N4, and consider the use of more exotic dielectrics.

Fabrication of a three step analog-to-digital V-I device

will be attempted during the second six months of the grant. Each element

in the device will be examined as a thin film capacitor to learn more

about the frequency dependence of tunneling structures. It is felt

the future use of tunneling digital transducers as part of the inte-

grated circuit technology will provide the digital system designer

with some new tools.

I
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VII. ATTENDANCE AT MEETINGS_ PAPERS AND PUBLICATIONS

A. ATTENDANCE AT MEETINGS

The project director attended the Research Conference on

Thin Films and Sensors, 8-9 September 1966 at the Research

Triangle Park, Durham, N. C. This meeting was co-sponsored

by the Langley Research Center of NASA. Project Director and

J. L. Stone attented the International Electron Devices Meeting

in Washington, D.C. While there, we visited the Goddard

Space Flight Center to discuss research progress and applica-

tions of results to other NASA problems with Mr. Nelson McAvoy.

Mr. J. R. Yeargan attended the Electro Chemical Society Meeting

in Philadelphia, Pa. which had a session devoted to silicon

nitride thin films.

B. PUBLICATIONS AND PAPERS

The following pages are abstracts of published papers,

papers presented at meetings and theses and dissertations

which were produced by the members of the laboratory staff.

Most of them were supported, fully or in part by the

NASA Grant NGR-44-012-043 and all are pertinent to the research

project.
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"Tunneling Between a Metal and Silicon Separated by a Polymer Insulator*",

Carl W. Wilmsen, ph.D. Dissertation, January 1967, The University of Texas,

Austin, Texas.

ABSTRACT

This research investigates tunneling between a metal and silicon sepa-

rated by an insulator (MIS structure) and develops a model describing the MIS

current-voltage characteristics. Analysis shows that any model for MIS

tunneling must consider the density of surface states and the formation of a

depletion or accumulation layer in the silicon. The model shows that the

electrie field in the insulator controls the MIS current while the charge

distribution in the silicon determines the insulator field.

For the experimental results presented in this paper a polymerized

silicone film formed the insulator. After establishing the technique of form-

ing the polymer, metal-insulator-metal (MIM) junctions enabled study of the

electrical properties of the polymer and characterization of MIM tunneling

currents. The MIM characteristics permitted comparative analysis with MIS

structures.

The experimental MIS curves on both N and P type silicon show the expon-

ential dependence of current on voltage and they indicate that the mechanisms

for M!M and MIS t_nneling are quite similar. An asymmetric saturation of the

MIS tunneling occurs. This is shown to be caused by the formation of a deple-

tion layer on the semiconductor which forms after completely charging the sur-

face states. Experimental evidence verifies this model. The distinct roles

played by the surface states, the depletion layer, insulator thickness, temp-

erature and the work function of the field plate metal appears in the analysis.

* Work done under the sponsorship of NASA Grant 8-i123_ NSF/URP and the

Joint Services Electronics Program.
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"Tunneling Between Silicon and a Metal Separated by a Thin Insulator*",

C. W. Wilmsen, W. H. Hartwig and G. L. Neely, Bull. Am. Phys. Soc., Ser. II,

vol. ii, no. 5, P. 740, July 1966.

ABSTRACT

Tunneling between silicon and a metal separated by a thin polymer

insulator has been observed. The variation of dc conductance with applied

voltage has been measured. These measurements are compared with previously

reported tunneling in Si-Si02 -metal (MOS) structures I and with the tunnel-

ing in metal-polymer-metal junctions. The results of the tests performed

on the silicon-polymer-metal (MPS) are similar to that reported for MOS

samples. The MPS conductance curves clearly demonstrate the exponential

nature of tunneling, which is similar to that found for metal-polymer-metal

Junctions. For positive voltage on P-type silicon, however, the conductance

of the MPS structure was found to level off after the exponential rise as

observed by Gray I for M0S structures. With N-type silicon, we observed that

the conductance leveled off with negative voltage. This saturation of the

conductance is shown to be related to the formation of a depletion region

at the silicon surface, which is an essential factor in correctly inter-

preting the experimental results. The MPS tunneling junctions were

constructed on chemically polished N- and P-type silicon wafers. The insula-

ting polymer films were formed in a vacuum by polymerizing adsorbed diffus-

ion pump oil on the silicon surface with 350-V electrons. The top metal

electrode was vapor-deposited on the polymer to complete the MPS structure.

* Research supported by the Joint Services Electronics Program and the

National Science Foundation Undergraduate Research Participation Program.

i. P. V. Gray, Phys. Rev. Letters 9, 302 (1962; Phys. Rev. AI40, 179 (1965).

Presented at the American Physical Society Meeting, Summer 1966, Mexico

City, August 29-31, 1966.



"AluminumDiffusion into AluminumOxide" C.A. Snell, J.H. Christian, and H.L.

Taylor, Bull. Am. Phxs. Soc., Ser. II, Vol. 12, No. 2, p. 205, 1967

ABSTRACT

A study of aluminum-aluminumoxide-aluminum structures fabricated to

achieve a net concentration gradient across the oxide yields the ionic diffusion

coefficient and activation energy. The fabrication process involves an aluminum

evaporation on glass followed by thermal oxidation and then another evaporation

of aluminum. Elevated temperature ionic diffusion at an abrupt interface pro-
duces a current in an external short circuit. The theoretical short-circuit

current expression fits quantitatively the slope of the experimental data which
follows a (time) -I/2 dependence. The ionic motion becomesvery small in about

5 min as indicated by the short-circuit current decreasing to 0. In the open
circuit case, the fact that electrons effectively accumulate on the electrode

where the ions diffuse into the oxide causes an open-circuit voltage. Analysis

and observation of the open-circuit voltages vs time can further illuminate the

ionic and electronic transport near a metal-dielectric interface.
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"Deposition of Silicon Nitride on Metal-Coated Substrates" by J.R. Yeargan

and H.L. Taylor, Presented at the Spring 1967 SWIEEECO meeting, Southwestern

IEEE Conference Record,R.L. Carrel, Editor, Collins Radio Company, Dallas,

Texas, April, 1967.

ABSTRACT

A metal-insulator-metal structure, using the dielectric to be studied

as the insulator, offers the best method of studying the electrical proper-

ties of thin dielectric films. This silicon nitride study included films of

thickness varying from 500 to 4000 _ngstroms on molybdenum-coated quartz

plates. The reaction of silane and ammonia in a hydrogen atmosphere at tem-

peratures from 600 to 900°C deposits the Si3N 4. The apparatus materials

include only teflon, stainless steel, graphite and quartz. A resistive gra-

phite substrate holder heats the substrate. Typical flowrates are 2000

std. cm3/min for hydrogen, 150 std. cm3/min for ammonia, and i0 std. cm3/min

for silane. Deposition rates range from i00 _/min depending on temperature

and flowrates, to i000 _ min. The resulting films exhibit resistivities of

the conduction component at high fields which is stable and reproducible.

The research was supported by NASA Grant NGR 44-012-043 and the Air Force

Joint Services Electronics Program under Grants AF-AFOSR-766-66 and AF-AFOSR

766-67.
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"I-V Characteristics of Mo-Si_N4-Metal Structures" by J.R. Yeargan and H.L.
Taylor, To be presented at th@ Electro Chemical Society Meeting, Dallas,
Texas, Ma_, 1967.

ABSTRACT

l-V data form a straight line over as muchas four decades on a Schottky
plot for thin films of vapor deposited silicon nitride in a metal-insulator-

metal configuration. Thickness variations, activation energies, and different

metals for electrodes indicate a bulk limited process. Current variation with

temperature is typical of thermal emission processes. These considerations

suggest a transport mechanismsimilar to the Poole-Frenkel effect.

This work supported by NASAGrant NGR44-012-043 and the Joint Services
"Electronics Program under Grant AF-AFOSR-766-66and AF-AF@SR-766-67.
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A Wide Band Optical Detector Using the
Photodielectric Effect in Cooled Semiconductors

by

W. H. Hartwig, G. D. Arndt and J. L. Stone

ABSTRACT

An AM-F_ detector is described which makesuse of the photodielectric

effect to optically tune a microwave oscillator. The device operates at

_"yogenic temperatures where the photodielectric effect dominates the photo-

conductive effect in semiconductors such as germaniumand silicon. The

change in dielectric polarization due to photoexcitation of free charge is

derived in the samemanner as the complex photoconductivity. The device is

an improvement over photoconductive detectors in several respects.

The device consists of an amplifier and a superconducting resonant

cavity having a quarter-wave stub terminated in a semiconductor wafer. The

unloaded cap, ties have Qs in excess of 107 which provides the oscillator

with exceptional short-term stability. The bandwidth is limited by the life-

time of carriers which is typically one nanosecond. Other factors limiting

the frequency response are the loaded Q and the time required for a distur-

bance to propagate around the oscillator loop. The sensitivity is propor-

tional to lifetime. Response of 20 cps per microwatt of light on a high

resistivity germanium sample illuminated by a GaAs laser is typical, with

the operating frequency at 787 Mc/sec. The photodie!ectric detector is shown

to surpass those operating in the _absorption mode over a wide frequency range.

Abstract for IEEE 1966 International Electron Devices Meeting, October 25 -

28, 1966.
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